ART2040

Electronics & Physical Computing

Concepts

Transducers (sensors/actuators)

Convert between physical/electrical energy

Input/Output

Direction of energy flow

Analog/Digital

Continuous (i.e. multi-state) vs Binary (i.e. two-state)

Serial/Parallel

How events in the flow occur over time

Interaction (break into 3 steps)

- □ Input (listen)
- Processing (think)
- Output (speak)

Example: movement -> light & sound

Transduction (Transducers)

- Eyes, ears, hands, mouth of physical computing systems
- Input transducers: sensors
- Output transducers: actuators
- Challenge: convert physical energy (light, heat, sound, pressure) to electrical energy and vice versa

Analog & Digital

- Analog has continuous range or multiple states
 i.e. gas pedal of a car
- Digital has only two states: on/off i.e. a light switch

Parallel & Serial

How are we listening/speaking?

Serial: events occur one at a time

Parallel: two or more events occur at the same time

Note: this also applies to electrical flow in circuits

Getting Started

- First describe what happens, not how it happens (avoid describing specific technologies this comes later)
- Break down into input, ouput, and processing
- Identify inputs & outputs as analog or digital

Refer to example: movement -> light & sound

Levels of Abstraction

Food	Software	Circuits
Highest level: go to restaurantTV Dinners	□MAX,MSP □Puredata	Buy readymade circuit
□Hamburger Helper □Supermarket □Growing own food □Lowest level: "Henry, go kill me a chicken and we'll have some pot pie tonight"	□Java □C □ASSEMBLY □MACHINE Language ("100100101110")	□Build circuit on breadboard □Build/etch your own PCB □Physically build your own components and circuit

The Tools

Circuits: glue between sensors\actuators & computers

Computers:

- Microcontrollers (Arduino) receive info from sensors, control other devices (i.e. motors), communicate with PCs
- Desktop Computers (i.e. PCs) run programs like PD

Programming:

- Puredata
- 2. Arduino Programming Environment

Electricity

- Flow of electrons from a point of greater electrical energy to a point of lesser electrical energy
- Always follows path of least resistance
- A circuit is a closed loop containing an electrical source (i.e. battery) and a load (i.e. light bulb)

Current/Voltage/Resistance

- Voltage (Volt) is the difference of electrical energy between two points
- Current (Amps) is the amount of electrical energy passing through any given point
- Resistance (Ohms) is the amount that a component resists current flow

Ohm's Law

 Relationship between voltage, current, resistance

Voltage = Current x Resistance

Likewise: Current = Voltage/Resistance Resistance = Voltage/Current

Electrical Power (Wattage)

- Determines how much "work" a circuit can do (i.e. turning a motor to lift a weight takes more power than turning on a small light)
- Power is measured in Watts
- Power (Watts) = Voltage (Volts) x Current (Amps)

Two ways to supply electrical power:

- Direct Current (DC) has constant voltage/current. Batteries supply DC.
- 2. Alternating Current (AC) alternates voltage in a wave pattern (usually sine).
- Most electronics operating using DC.
 Electricity supplied to homes is AC
 therefore we need AC-to-DC converters
 (transformers) or use batteries.

Circuits

 Current flows from positive terminal to negative terminal (ground). Along the way you insert various components (i.e. resistors, capacitors, diodes) to divert the electrons to do your bidding

Circuits

- Remember: electricity always favors path of least resistance (avoid short circuits!)
- Also: all the electrical energy (voltage) supplied must be used up in the circuit. If too much energy is supplied components heat up and break!

Resistors

- Give electricity something to do: convert electrical energy to heat (preventing short circuits)
- No polarity (no positive/negative side)
- Measured in ohms, indicated how much resistance they offer
- □ Schematic symbol: ¬√√−

Variable Resistors

Commonly used as sensors for analog input.

Thermistor: resistance changes with change in heat

Potentiometer aka Pot (another variable Resistor)

Changes resistance by turning knob (commonly used as volume knobs)

 Orientation is important: they have three pins

Schematic symbol:

- Store electrical energy (charge)
- Measured in farads (F). Most capacitors are in the range of microfarads (mF or µF), picofarads (pF), nanofarads (nF).
- □ Some are unpolarized: —
- - + goes towards higher voltage

 Capacitors are good for smoothing out erratic electrical flow: they release charge when current dips and store excess charge when the current spikes.

Inductors

- Coil of wire wrapped around a core (air, iron, other magnetic metals)
- Property of inductance: electrical current produces a magnetic field
- Analogous to capacitors: an inductor can be considered as an inverse of a capacitor
- Measured in Henries (H), ------

Diodes

- It's like a one way street: only allows current to flow in one direction
- This means they are polarized (orientation matters)
- □ Schematic Symbol: →

LED (Light Emitting Diode)

Low power 'light bulb'

Usually rated at or below 5V and 20milliamps (0.02A)

Switches

- Simple concept, but many varieties
- Normally open (N.O.) vs normally closed (N.C)
- Momentary (pushbuttons) vs toggle (light switch)
- Magnetic switches (reed switches)

- Switching devices controlled by electronic signals (as opposed to physical)
- Relays work by passing small current through a coil to activate a switch that allows large current to pass
- Transistors are a bit more complicated

NPN Transistor

example

Motors: RC Servo

- Unlike traditional motors
- Built in components let user control exact position of the motor
- □ Use Pulse Width Modulation (PWM) signal to control the motor (PWM is obtained from microcontroller)
- □ Easy to control (compared to other motors)

Solenoids

- Device that provides linear motion
- Coil of wire with iron shaft
- Uses property of inductance to generate magnetic field and shaft is pulled or pushed as a result
- Not very difficult to control (usually requires relay/transistor and diode)

Voltage Regulators

- convert a range of voltages (8-15V DC) to a fixed voltage (5V DC)
- Common regulator is the 7805 which converts to 5V DC rated for 1Amp

Other components/Tools

 Connectors: male, female (note: connectors emmiting electrical energy should be female)

Multimeter:
 Measures voltage, current,
 resistance, sometimes
 even capacitance

Microcontrollers (Arduino board)

www.arduino.cc

Building a circuit: Working from a Schematic

Lets make a Theremin

"theremin"

Move hand over photocell to change pitch

Play with val processing & cycles count to alter sensitivity, pitch and timbre

This is frequency modulation, since you're changing the frequency

```
Arduino - 0005 Alpha
            theremin
  pinMode(speakerPin, OUTPUT);
  beginSerial (9600);
  Serial.println("ready");
void loop() {
  digitalWrite(speakerPin, LOW);
 val = analogRead(potPin);
                              // read value from the sensor
  val = val*2;
                              // process the value a little
 //val = val/2;
                               // process the value a little
  for( int i=0; i<50; i++ ) { // play it for 50 cycles
   digitalWrite(speakerPin, HIGH);
    delayMicroseconds(val);
   digitalWrite(speakerPin, LOW);
   delayMicroseconds(val);
 Done uploading.
  nel AVR ATmega8 is found.
   mware Version: 1.18
```

Resources

Physical Computing by Dan O'Sullivan and Tom Igoe

http://electronics.howstuffworks.com